Reliability Prediction Based on Variation Mode and Effect Analysis

The possibility of predicting the reliability of hardware for both components and systems is important in engineering design. Today, there are several methods for predicting the reliability of hardware systems and for identifying the causes of failure and failure modes, for example, fault tree analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2013-07, Vol.29 (5), p.699-708
Hauptverfasser: Pavasson, Jonas, Cronholm, Kent, Strand, Henrik, Karlberg, Magnus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The possibility of predicting the reliability of hardware for both components and systems is important in engineering design. Today, there are several methods for predicting the reliability of hardware systems and for identifying the causes of failure and failure modes, for example, fault tree analysis and failure mode and effect analysis. Many failures are caused by variations resulting in a substantial effect on safety or functional requirements. To identify, to assess and to manage unwanted sources of variation, a method called probabilistic variation mode and effect analysis (VMEA) has been developed. With a prescribed reliability, VMEA can be used to derive safety factors in different applications. However, there are few reports on how to derive the reliability based on probabilistic VMEA, especially for transmission clutch shafts. Hence, the objective of this article was to show how to derive system reliability based on probabilistic VMEA. In particular, wheel loader automatic transmission clutch shaft reliability is investigated to show how different sources of variation affect reliability. In this article, a new method for predicting system reliability based on probabilistic VMEA is proposed. The method is further verified by a case study on a clutch shaft. It is shown that the reliability of the clutch shaft was close to 1.0 and that the most significant variation contribution was due to mean radius of the friction surface and friction of the disc. Copyright © 2012 John Wiley & Sons, Ltd.
ISSN:0748-8017
1099-1638
1099-1638
DOI:10.1002/qre.1420