Lagrangian Distributions and Fourier Integral Operators with Quadratic Phase Functions and Shubin Amplitudes
We study Fourier integral operators with Shubin amplitudes and quadratic phase functions associated to twisted graph Lagrangians with respect to symplectic matrices. We factorize such an operator as the composition of a Weyl pseudodifferential operator and a metaplectic operator and derive a charact...
Gespeichert in:
Veröffentlicht in: | Publications of the Research Institute for Mathematical Sciences 2020-01, Vol.56 (3), p.561-602 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Fourier integral operators with Shubin amplitudes and quadratic phase functions associated to twisted graph Lagrangians with respect to symplectic matrices. We factorize such an operator as the composition of a Weyl pseudodifferential operator and a metaplectic operator and derive a characterization of its Schwartz kernel in terms of phase space estimates. Extending the conormal distributions in the Shubin calculus, we define an adapted notion of Lagrangian tempered distribution. We show that the kernels of Fourier integral operators are identical to Lagrangian distributions with respect to twisted graph Lagrangians. |
---|---|
ISSN: | 0034-5318 1663-4926 1663-4926 |
DOI: | 10.4171/PRIMS/56-3-5 |