Solvability of infinite systems of third-order differential equations in c 0 by Meir–Keeler condensing operators

Throughout this work, using the technique of measure of noncompactness together with Meir–Keeler condensing operators, we study the solvability of the following infinite system of third-order differential equations in the Banach sequence space c0 as a closed subspace of ℓ∞: ui″′+aui″+bui′+cui=fi(t,u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fixed point theory and applications 2019-01, Vol.21 (2), p.1-16
Hauptverfasser: Saadati, R, Pourhadi, E, Mursaleen, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Throughout this work, using the technique of measure of noncompactness together with Meir–Keeler condensing operators, we study the solvability of the following infinite system of third-order differential equations in the Banach sequence space c0 as a closed subspace of ℓ∞: ui″′+aui″+bui′+cui=fi(t,u1(t),u2(t),…)where fi∈C(R×R∞,R) is ω-periodic with respect to the first coordinate and a,b,c∈R are constant. Our approach depends on the Green’s function corresponding to the aforesaid system and deduce some conclusions relevant to the existence of ω-periodic solutions in Banach sequence space c0. In addition, some examples are supplied to illustrate the usefulness of the outcome.
ISSN:1661-7738
1661-7746
1661-7746
DOI:10.1007/s11784-019-0696-9