p-Adic Analogue of the Porous Medium Equation
We consider a nonlinear evolution equation for complex-valued functions of a real positive time variable and a p -adic spatial variable. This equation is a non-Archimedean counterpart of the fractional porous medium equation. Developing, as a tool, an L 1 -theory of Vladimirov’s p -adic fractional d...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2018-10, Vol.24 (5), p.1401-1424 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a nonlinear evolution equation for complex-valued functions of a real positive time variable and a
p
-adic spatial variable. This equation is a non-Archimedean counterpart of the fractional porous medium equation. Developing, as a tool, an
L
1
-theory of Vladimirov’s
p
-adic fractional differentiation operator, we prove m-accretivity of the appropriate nonlinear operator, thus obtaining the existence and uniqueness of a mild solution. We give also an example of an explicit solution of the
p
-adic porous medium equation. |
---|---|
ISSN: | 1069-5869 1531-5851 1531-5851 |
DOI: | 10.1007/s00041-017-9556-4 |