p-Adic Analogue of the Porous Medium Equation

We consider a nonlinear evolution equation for complex-valued functions of a real positive time variable and a p -adic spatial variable. This equation is a non-Archimedean counterpart of the fractional porous medium equation. Developing, as a tool, an L 1 -theory of Vladimirov’s p -adic fractional d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2018-10, Vol.24 (5), p.1401-1424
Hauptverfasser: Khrennikov, Andrei Yu, Kochubei, Anatoly N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a nonlinear evolution equation for complex-valued functions of a real positive time variable and a p -adic spatial variable. This equation is a non-Archimedean counterpart of the fractional porous medium equation. Developing, as a tool, an L 1 -theory of Vladimirov’s p -adic fractional differentiation operator, we prove m-accretivity of the appropriate nonlinear operator, thus obtaining the existence and uniqueness of a mild solution. We give also an example of an explicit solution of the p -adic porous medium equation.
ISSN:1069-5869
1531-5851
1531-5851
DOI:10.1007/s00041-017-9556-4