Baltic Sea phytoplankton in a changing environment
Future climate scenarios in the Baltic Sea project increasing sea surface temperature, as well as increasing precipitation and river runoff resulting in decreased salinity. These changes can severely impact the dynamics and function of brackish water communities, specifically phytoplankton. Phytopla...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Future climate scenarios in the Baltic Sea project increasing sea surface temperature, as well as increasing precipitation and river runoff resulting in decreased salinity. These changes can severely impact the dynamics and function of brackish water communities, specifically phytoplankton. Phytoplankton are a significant source of organic matter to other trophic levels, and some species can be toxic. Their response to future climate conditions is of great relevance for the health of humans and aquatic ecosystems. The aim of this thesis was to assess the potential for climate-induced changes, such as decreasing salinity, to affect phytoplankton dynamics, physiology and chemical profiles in the Baltic Sea.
Phytoplankton successional patterns in the Baltic Proper consist of a spring bloom where diatoms and dinoflagellates co-occur and a summer bloom dominated by filamentous/colonial cyanobacteria. The consensus is that future warmer conditions will promote filamentous/colonial cyanobacteria blooms. This thesis shows that phytoplankton biomass in the spring bloom was lower in years with milder winters compared with cold winters. This suggests that in terms of annual carbon export to higher trophic levels, loss of biomass from the spring bloom is unlikely to be compensated by summer cyanobacteria. High frequency sampling of phytoplankton performed in this thesis revealed a strong relationship between the dynamics of pico- and filamentous cyanobacteria. Large genetic diversity was found in cyanobacterial populations with high niche differentiation among the same species. At community level, high temperature and low salinity were the main factors shaping the summer cyanobacterial composition. These conditions may promote the predominance of opportunistic filamentous cyanobacteria, e.g. Nodularia spumigena . This species produces various bioactive compounds, including non-ribosomal peptides such as the hepatotoxin nodularin. In this work, N. spumigena subpopulations evolved different physiological strategies, including chemical profiles, to cope with salinity stress. This high phenotypic plasticity ensures survival in future climate conditions. Under salinity stress, some subpopulations displayed shorter filaments as a trade-off. This indicates that the future freshening of the Baltic Sea may promote grazing on filamentous cyanobacteria and modify carbon flows in the ecosystem. In this thesis, Baltic N. spumigena chemotypes and genotypes grouped into two mai |
---|