Experimental and theoretical study of stress relaxation in high-density polyethylene

Stress relaxation of high-density polyethylene is addressed both experimentally and theoretically. Two types of stress relaxation testing are carried out: uniaxial tensile testing at constant test specimen length and compression testing of a 3D structure producing inhomogeneous deformation fields an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2024-04, Vol.235 (4), p.2455-2477
Hauptverfasser: Kroon, Martin, Görtz, Jakob, Islam, Shafiqul, Andreasson, Eskil, Petersson, Viktor, Jutemar, Elin Persson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stress relaxation of high-density polyethylene is addressed both experimentally and theoretically. Two types of stress relaxation testing are carried out: uniaxial tensile testing at constant test specimen length and compression testing of a 3D structure producing inhomogeneous deformation fields and relaxation. A constitutive model for isotropic, semi-crystalline polymers is also proposed. The model has the ability to model stress relaxation at different time scales. The developed model was implemented as a user subroutine in Abaqus (UMAT). The implicit integration scheme including an algorithmic tangent modulus is described in detail. The material model is calibrated by use of the uniaxial tensile tests, and the model is then validated by simulating the compression tests of the 3D structure. The model is able to describe the uniaxial tension tests well, and the comparison between the simulations and experimental testing of the 3D structure shows very good agreement.
ISSN:0001-5970
1619-6937
1619-6937
DOI:10.1007/s00707-024-03851-z