Fractional Fourier transforms, harmonic oscillator propagators and Strichartz estimates on Pilipović and modulation spaces

We give a proof of that harmonic oscillator propagators and fractional Fourier transforms are essentially the same. We deduce continuity properties and fix time estimates for such operators on modulation spaces, and apply the results to prove Strichartz estimates for such propagators when acting on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and computational harmonic analysis 2023-11, Vol.67, p.101580, Article 101580
Hauptverfasser: Toft, Joachim, Bhimani, Divyang G., Manna, Ramesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a proof of that harmonic oscillator propagators and fractional Fourier transforms are essentially the same. We deduce continuity properties and fix time estimates for such operators on modulation spaces, and apply the results to prove Strichartz estimates for such propagators when acting on Pilipović and modulation spaces. Especially we extend some results by Balhara, Cordero, Nicola, Rodino and Thangavelu. We also show that general forms of fractional harmonic oscillator propagators are continuous on suitable Pilipović spaces.
ISSN:1063-5203
1096-603X
1096-603X
DOI:10.1016/j.acha.2023.101580