Non-Markovian Impulse Control Under Nonlinear Expectation
We consider a general type of non-Markovian impulse control problems under adverse non-linear expectation or, more specifically, the zero-sum game problem where the adversary player decides the probability measure. We show that the upper and lower value functions satisfy a dynamic programming princi...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2023-12, Vol.88 (3), p.72, Article 72 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a general type of non-Markovian impulse control problems under adverse non-linear expectation or, more specifically, the zero-sum game problem where the adversary player decides the probability measure. We show that the upper and lower value functions satisfy a dynamic programming principle (DPP). We first prove the dynamic programming principle (DPP) for a truncated version of the upper value function in a straightforward manner. Relying on a uniform convergence argument then enables us to show the DPP for the general setting. Following this, we use an approximation based on a combination of truncation and discretization to show that the upper and lower value functions coincide, thus establishing that the game has a value and that the DPP holds for the lower value function as well. Finally, we show that the DPP admits a unique solution and give conditions under which a saddle point for the game exists. As an example, we consider a stochastic differential game (SDG) of impulse versus classical control of path-dependent stochastic differential equations (SDEs). |
---|---|
ISSN: | 0095-4616 1432-0606 1432-0606 |
DOI: | 10.1007/s00245-023-10049-7 |