Fourier Characterizations and Non-triviality of Gelfand–Shilov Spaces, with Applications to Toeplitz Operators

We find growth estimates on functions and their Fourier transforms in the one-parameter Gelfand–Shilov spaces S s , S σ , Σ s and Σ σ . We obtain characterizations for these spaces and their duals in terms of estimates of short-time Fourier transforms. We determine conditions on the symbols of Toepl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2023-06, Vol.29 (3), Article 29
1. Verfasser: Petersson, Albin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We find growth estimates on functions and their Fourier transforms in the one-parameter Gelfand–Shilov spaces S s , S σ , Σ s and Σ σ . We obtain characterizations for these spaces and their duals in terms of estimates of short-time Fourier transforms. We determine conditions on the symbols of Toeplitz operators under which the operators are continuous on the one-parameter spaces. Lastly, it is determined that Σ s σ is nontrivial if and only if s + σ > 1 .
ISSN:1069-5869
1531-5851
1531-5851
DOI:10.1007/s00041-023-10009-3