Fourier Characterizations and Non-triviality of Gelfand–Shilov Spaces, with Applications to Toeplitz Operators
We find growth estimates on functions and their Fourier transforms in the one-parameter Gelfand–Shilov spaces S s , S σ , Σ s and Σ σ . We obtain characterizations for these spaces and their duals in terms of estimates of short-time Fourier transforms. We determine conditions on the symbols of Toepl...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2023-06, Vol.29 (3), Article 29 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We find growth estimates on functions and their Fourier transforms in the one-parameter Gelfand–Shilov spaces
S
s
,
S
σ
,
Σ
s
and
Σ
σ
. We obtain characterizations for these spaces and their duals in terms of estimates of short-time Fourier transforms. We determine conditions on the symbols of Toeplitz operators under which the operators are continuous on the one-parameter spaces. Lastly, it is determined that
Σ
s
σ
is nontrivial if and only if
s
+
σ
>
1
. |
---|---|
ISSN: | 1069-5869 1531-5851 1531-5851 |
DOI: | 10.1007/s00041-023-10009-3 |