Metal versus rare-gas ion irradiation during Ti1-xAlxN film growth by hybrid high power pulsed magnetron/dc magnetron co-sputtering using synchronized pulsed substrate bias

Metastable NaCl-structure Ti1-xAlxN is employed as a model system to probe the effects of metal versus rare-gas ion irradiation during film growth using reactive high-power pulsed magnetron sputtering (HIPIMS) of Al and dc magnetron sputtering of Ti. The alloy film composition is chosen to be x = 0....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2012-11, Vol.30 (6)
Hauptverfasser: Greczynski, Grzegorz, Lu, Jun, Jensen, Jens, Petrov, Ivan, Greene, Joseph E., Bolz, Stephan, Koelker, Werner, Schiffers, Christoph, Lemmer, Oliver, Hultman, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metastable NaCl-structure Ti1-xAlxN is employed as a model system to probe the effects of metal versus rare-gas ion irradiation during film growth using reactive high-power pulsed magnetron sputtering (HIPIMS) of Al and dc magnetron sputtering of Ti. The alloy film composition is chosen to be x = 0.61, near the kinetic solubility limit at the growth temperature of 500 degrees C. Three sets of experiments are carried out: a -60V substrate bias is applied either continuously, in synchronous with the full HIPIMS pulse, or in synchronous only with the metal-rich-plasma portion of the HIPIMS pulse. Alloy films grown under continuous dc bias exhibit a thickness-invariant small-grain, two-phase nanostructure (wurtzite AlN and cubic Ti1-xAlxN) with random orientation, due primarily to intense Ar+ irradiation leading to Ar incorporation (0.2 at. %), high compressive stress (-4.6 GPa), and material loss by resputtering. Synchronizing the bias with the full HIPIMS pulse results in films that exhibit much lower stress levels (-1.8GPa) with no measureable Ar incorporation, larger grains elongated in the growth direction, a very small volume fraction of wurtzite AlN, and random orientation. By synchronizing the bias with the metal-plasma phase of the HIPIMS pulses, energetic Ar+ ion bombardment is greatly reduced in favor of irradiation predominantly by Al+ ions. The resulting films are single phase with a dense competitive columnar structure, strong 111 orientation, no measureable trapped Ar concentration, and even lower stress (-0.9 GPa). Thus, switching from Ar+ to Al+ bombardment, while maintaining the same integrated incident ion/metal ratio, eliminates phase separation, minimizes renucleation during growth, and reduces the high concentration of residual point defects, which give rise to compressive stress.
ISSN:1520-8559
0734-2101
DOI:10.1116/1.4750485