Multi-linear Formulation of Differential Geometry and Matris Regularizations
We prove that many aspects of the differential geometry of embedded Riemannian manifolds can be formulated in terms of multi-linear algebraic structures on the space of smooth functions. In particular, we find algebraic expressions for Weingarten’s formula, the Ricci curvature, and the Codazzi-Maina...
Gespeichert in:
Veröffentlicht in: | Journal of differential geometry 2012-05, Vol.91 (1), p.1-39 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that many aspects of the differential geometry of
embedded Riemannian manifolds can be formulated in terms of
multi-linear algebraic structures on the space of smooth functions.
In particular, we find algebraic expressions for Weingarten’s formula,
the Ricci curvature, and the Codazzi-Mainardi equations.
¶ For matrix analogues of embedded surfaces, we define discrete
curvatures and Euler characteristics, and a non-commutative Gauss–
Bonnet theorem is shown to follow. We derive simple expressions
for the discrete Gauss curvature in terms of matrices representing
the embedding coordinates, and explicit examples are provided.
Furthermore, we illustrate the fact that techniques from differential
geometry can carry over to matrix analogues by proving that
a bound on the discrete Gauss curvature implies a bound on the
eigenvalues of the discrete Laplace operator. |
---|---|
ISSN: | 0022-040X 1945-743X 1945-743X |
DOI: | 10.4310/jdg/1343133699 |