Multi-linear Formulation of Differential Geometry and Matris Regularizations

We prove that many aspects of the differential geometry of embedded Riemannian manifolds can be formulated in terms of multi-linear algebraic structures on the space of smooth functions. In particular, we find algebraic expressions for Weingarten’s formula, the Ricci curvature, and the Codazzi-Maina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of differential geometry 2012-05, Vol.91 (1), p.1-39
Hauptverfasser: Arnlind, Joakim, Hoppe, Jens, Huisken, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that many aspects of the differential geometry of embedded Riemannian manifolds can be formulated in terms of multi-linear algebraic structures on the space of smooth functions. In particular, we find algebraic expressions for Weingarten’s formula, the Ricci curvature, and the Codazzi-Mainardi equations. ¶ For matrix analogues of embedded surfaces, we define discrete curvatures and Euler characteristics, and a non-commutative Gauss– Bonnet theorem is shown to follow. We derive simple expressions for the discrete Gauss curvature in terms of matrices representing the embedding coordinates, and explicit examples are provided. Furthermore, we illustrate the fact that techniques from differential geometry can carry over to matrix analogues by proving that a bound on the discrete Gauss curvature implies a bound on the eigenvalues of the discrete Laplace operator.
ISSN:0022-040X
1945-743X
1945-743X
DOI:10.4310/jdg/1343133699