Patient-Specific Modeling and Simulation of Deep Brain Stimulation

Deep brain stimulation (DBS) is widely used for reduction of symptoms caused by movement disorders. In this chapter a patient-specific finite element method for modeling and simulation of DBS electric parameters is presented. The individual’s stereotactic preoperative MR-batch of images is used as i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wårdell, Karin, Diczfalusy, Elin, Åström, Mattias
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep brain stimulation (DBS) is widely used for reduction of symptoms caused by movement disorders. In this chapter a patient-specific finite element method for modeling and simulation of DBS electric parameters is presented. The individual’s stereotactic preoperative MR-batch of images is used as input to the model in order to classify tissue type and allot electrical conductivity for cerebrospinal fluid, blood and grey as well as white matter. With patient-specific positioning of the DBS electrodes the method allows for investigation of the relative electric field changes in relation to anatomy and DBS-settings. Examples of visualization of the patient-specific electric entities together with the surrounding anatomy are given. The use of the method is exemplified on patients with Parkinson’s disease. Future applications including multiphysics simulations and applicability for new DBS targets and symptoms are discussed.
ISSN:1868-2006
1868-2014
DOI:10.1007/8415_2011_104