Recruitment of multiple cell lines by collagen-synthetic copolymer matrices in corneal regeneration

Collagen hydrogel matrices with high optical clarity have been developed from collagen I, cross-linked with a copolymer based on N-isopropylacrylamide, acrylic acid and acryloxysuccinimide. The controlled reaction of collagen amine groups with this copolymer under neutral pH and aqueous conditions g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2005-06, Vol.26 (16), p.3093-3104
Hauptverfasser: Li, F., Griffith, M., Li, Z., Tanodekaew, S., Sheardown, H., Hakim, M., Carlsson, D.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Collagen hydrogel matrices with high optical clarity have been developed from collagen I, cross-linked with a copolymer based on N-isopropylacrylamide, acrylic acid and acryloxysuccinimide. The controlled reaction of collagen amine groups with this copolymer under neutral pH and aqueous conditions gave robust, optically clear hydrogels and prevented the excessive collagen fibrillogenesis that can lead to collagen opacity. These sterile, non-cytotoxic hydrogels allowed epithelial cell overgrowth and both stromal cell and nerve neurite ingrowth from the host tissue. This regenerative ability appeared to result from the high glucose permeability, nanoporosity and the presence of cell adhesion factors, RGD in collagen and the laminin pentapeptide, YIGSR, grafted onto the copolymer. Under physiological conditions, optical clarity superior to the human cornea and tensile performance adequate for suturing were obtained from some formulations.
ISSN:0142-9612
1878-5905
1878-5905
DOI:10.1016/j.biomaterials.2004.07.063