Differentiation of a fibrin gel encapsulated chondrogenic cell line
Hyaline cartilage has very limited regenerative capacity following damage. Therefore engineered tissue substitutes have been the focus of much research. Our objective was to develop a fibrin-based scaffold as a cell delivery vehicle and template for hyaline cartilage regeneration, and compare its ce...
Gespeichert in:
Veröffentlicht in: | International journal of artificial organs 2007-07, Vol.30 (7), p.619-627 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hyaline cartilage has very limited regenerative capacity following damage. Therefore engineered tissue substitutes have been the focus of much research. Our objective was to develop a fibrin-based scaffold as a cell delivery vehicle and template for hyaline cartilage regeneration, and compare its cellular properties against monolayer and pellet culture for chondrogenic cells. The chondrogenic precursor cell line, RCJ 3.1C5.18 (C5.18), was chosen as a test system for evaluating the effect of various culture conditions, including cell encapsulation, on articular chondrogenic cell differentiation. The C5.18 cells in monolayer showed elevated expression of collagen II, an articular chondrogenic marker, but also markers for fibrocartilage differentiation (collagen I and versican) when cultured with chondrogenic medium as compared to basic maintenance medium. Pellets of C5.18 cells cultured in chondrogenic medium were histologically more organized in structure than pellets cultured in control maintenance medium. The chondrogenic medium cultured pellets also secreted an extracellular matrix that was comprised of type II with very little type I collagen, indicating a trend towards a more hyaline-like cartilage. Moreover, when cultured in chondrogenic medium, fibrin-encapsulated C5.18 cells elaborated an extracellular matrix containing type II collagen, as well as aggrecan, which are both components of hyaline cartilage. This indicated a more articular-like chondrogenic differentiation for fibrin encapsulated C5.18 cells. The results of these experiments provide evidence that the C5.18 cell line can be used as a tool to evaluate potential scaffolds for articular cartilage tissue engineering. |
---|---|
ISSN: | 0391-3988 1724-6040 1724-6040 |
DOI: | 10.1177/039139880703000710 |