Perfect codes as isomorphic spaces
Linear equivalence between perfect codes is defined. This definition gives the concept of general perfect 1-error correcting binary codes. These are defined as 1-error correcting perfect binary codes, with the difference that the set of errors is not the set of weight one words, instead any set with...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2006, Vol.306 (16), p.1981-1987 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Linear equivalence between perfect codes is defined. This definition gives the concept of general perfect 1-error correcting binary codes. These are defined as 1-error correcting perfect binary codes, with the difference that the set of errors is not the set of weight one words, instead any set with cardinality
n and full rank is allowed. The
side class structure defines the restrictions on the subspace of any general 1-error correcting perfect binary code. Every linear equivalence class will contain all codes with the same length, rank and dimension of kernel and all codes in the linear equivalence class will have isomorphic side class structures. |
---|---|
ISSN: | 0012-365X 1872-681X 1872-681X |
DOI: | 10.1016/j.disc.2006.03.039 |