Evaluation of Solid-Phase Microextraction for Time-Weighted Average Sampling of Volatile Sulfur Compounds at ppb Concentrations

The potential of solid-phase microextraction (SPME) for time-weighted average (TWA) sampling of volatile sulfur compounds in air at ppb concentrations was investigated. The target compounds (hydrogen sulfide, methanethiol (MeSH), ethanethiol (EtSH), dimethyl sulfide (Me2S), and dimethyl disulfide (M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2003-06, Vol.75 (11), p.2626-2632
Hauptverfasser: Lestremau, François, Andersson, Fräs Annika T, Desauziers, Valérie, Fanlo, Jean-Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The potential of solid-phase microextraction (SPME) for time-weighted average (TWA) sampling of volatile sulfur compounds in air at ppb concentrations was investigated. The target compounds (hydrogen sulfide, methanethiol (MeSH), ethanethiol (EtSH), dimethyl sulfide (Me2S), and dimethyl disulfide (Me2S2)) were extracted using SPME with a Carboxen−poly(dimethylsiloxane) fiber coating, and diffusion was controlled by keeping the fiber retracted within the needle of the sampling device. The effects of several important experimental variables (air velocity, direction of air flow, analyte concentration, humidity, temperature, extraction time) were studied. The uptake by the fiber was not affected by the direction of the air flow or the air velocity. The effects of concentration, humidity, temperature, and extraction time were examined in experiments with a central composite face design. The results showed that all or most of the investigated parameters had a significant impact on the uptake rates of H2S, MeSH, EtSH, and Me2S, which invalidated time-weighted average sampling of these compounds by SPME under the tested conditions. Moreover, reverse diffusion of H2S, MeSH, and EtSH occurred at 40% relative humidity. For Me2S2, the uptake rate had a variation of only 8% within the whole experimental domain, and the experimental value derived for the uptake rate was consistent with the theoretical value. This result was confirmed by comparative analyses of industrial samples by the standard addition method. Therefore, SPME appears to be a suitable technique for TWA sampling of Me2S2 using the Carboxen−poly(dimethylsiloxane) fiber coating. Finally, in an investigation of potential losses during storage of the fiber, no significant losses of the target compounds were detected after 3 days at −80 °C.
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/ac034124g