A framework and automotive application of collision avoidance decision making

Collision avoidance (CA) systems are applicable for most transportation systems ranging from autonomous robots and vehicles to aircraft, cars and ships. A probabilistic framework is presented for designing and analyzing existing CA algorithms proposed in literature, enabling on-line computation of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2008-09, Vol.44 (9), p.2347-2351
Hauptverfasser: Jansson, Jonas, Gustafsson, Fredrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Collision avoidance (CA) systems are applicable for most transportation systems ranging from autonomous robots and vehicles to aircraft, cars and ships. A probabilistic framework is presented for designing and analyzing existing CA algorithms proposed in literature, enabling on-line computation of the risk for faulty intervention and consequence of different actions. The approach is based on Monte Carlo techniques, where sampling-resampling methods are used to convert sensor readings with stochastic errors to a Bayesian risk. The concepts are evaluated using a real-time implementation of an automotive collision mitigation system, and results from one demonstrator vehicle are presented.
ISSN:0005-1098
1873-2836
1873-2836
DOI:10.1016/j.automatica.2008.01.016