Electric circuit networks equivalent to chaotic quantum billiards

We consider two electric RLC resonance networks that are equivalent to quantum billiards. In a network of inductors grounded by capacitors, the eigenvalues of the quantum billiard correspond to the squared resonant frequencies. In a network of capacitors grounded by inductors, the eigenvalues of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2005-04, Vol.71 (4 Pt 2), p.046205-046205, Article 046205
Hauptverfasser: Bulgakov, Evgeny N, Maksimov, Dmitrii N, Sadreev, Almas F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider two electric RLC resonance networks that are equivalent to quantum billiards. In a network of inductors grounded by capacitors, the eigenvalues of the quantum billiard correspond to the squared resonant frequencies. In a network of capacitors grounded by inductors, the eigenvalues of the billiard are given by the inverse of the squared resonant frequencies. In both cases, the local voltages play the role of the wave function of the quantum billiard. However, unlike for quantum billiards, there is a heat power because of the resistance of the inductors. In the equivalent chaotic billiards, we derive a distribution of the heat power which describes well the numerical statistics.
ISSN:1539-3755
1063-651X
1550-2376
1095-3787
DOI:10.1103/PhysRevE.71.046205