Simplified Design of Constant Coefficient Multipliers

In many digital signal processing algorithms, e.g., linear transforms and digital filters, the multiplier coefficients are constant. Hence, it is possible to implement the multiplier using shifts, adders, and subtracters. In this work two approaches to realize constant coefficient multiplication wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2006-04, Vol.25 (2), p.225-251
Hauptverfasser: Gustafsson, Oscar, Dempster, Andrew G., Johansson, Kenny, Macleod, Malcolm D., Wanhammar, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many digital signal processing algorithms, e.g., linear transforms and digital filters, the multiplier coefficients are constant. Hence, it is possible to implement the multiplier using shifts, adders, and subtracters. In this work two approaches to realize constant coefficient multiplication with few adders and subtracters are presented. The first yields optimal results, i.e., a minimum number of adders and subtracters, but requires an exhaustive search. Compared with previous optimal approaches, redundancies in the exhaustive search cause the search time to be drastically decreased. The second is a heuristic approach based on signed-digit representation and subexpression sharing. The results for the heuristic are worse in only approximately 1% of all coefficients up to 19 bits. However, the optimal approach results in several different optimal realizations, from which it is possible to pick the best one based on other criteria. Relations between the number of adders, possible coefficients, and number of cascaded adders are presented, as well as exact equations for the number of required full and half adder cells. The results show that the number of adders and subtracters decreases on average 25% for 19-bit coefficients compared with the canonic signed-digit representation. [PUBLICATION ABSTRACT]
ISSN:0278-081X
1531-5878
1531-5878
DOI:10.1007/s00034-005-2505-5