Eco-Friendly Cellulose Nanofibrils Designed by Nature: Effects from Preserving Native State

Cellulose nanofibrils (CNFs) show high modulus and strength and are already used in industrial applications. Mechanical properties of neat CNF films or CNF–polymer matrix nanocomposites are usually much better than for polymer matrix composite films reinforced by clay, graphene, graphene oxide, or c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-01, Vol.14 (1), p.724-735
Hauptverfasser: Yang, Xuan, Reid, Michael S, Olsén, Peter, Berglund, Lars A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cellulose nanofibrils (CNFs) show high modulus and strength and are already used in industrial applications. Mechanical properties of neat CNF films or CNF–polymer matrix nanocomposites are usually much better than for polymer matrix composite films reinforced by clay, graphene, graphene oxide, or carbon nanotubes. In order to obtain small CNF diameter and colloidal stability, chemical modification has so far been necessary, but this increases cost and reduces eco-friendly attributes. In this study, an unmodified holocellulose CNF (Holo-CNF) with small diameter is obtained from mildly peracetic acid delignified wood fibers. CNF is readily defibrillated by low-energy kitchen blender processing. The hemicellulose coating on individual fibrils in the wood plant cell wall is largely preserved in Holo-CNF. This “native” CNF shows well-preserved native fibril structure in terms of length (∼2.1 μm), diameter (
ISSN:1936-0851
1936-086X
1936-086X
DOI:10.1021/acsnano.9b07659