Understanding Large Language Models: Towards Rigorous and Targeted Interpretability Using Probing Classifiers and Self-Rationalisation
Large language models (LLMs) have become the base of many natural language processing (NLP) systems due to their performance and easy adaptability to various tasks. However, much about their inner workings is still unknown. LLMs have many millions or billions of parameters, and large parts of their...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Large language models (LLMs) have become the base of many natural language processing (NLP) systems due to their performance and easy adaptability to various tasks. However, much about their inner workings is still unknown. LLMs have many millions or billions of parameters, and large parts of their training happen in a self-supervised fashion: They simply learn to predict the next word, or missing words, in a sequence. This is effective for picking up a wide range of linguistic, factual and relational information, but it implies that it is not trivial what exactly is learned, and how it is represented within the LLM.
In this thesis, I present our work on methods contributing to better understanding LLMs. The work can be grouped into two approaches. The first lies within the field of interpretability, which is concerned with understanding the internal workings of the LLMs. Specifically, we analyse and refine a tool called probing classifiers that inspects the intermediate representations of LLMs, focusing on what roles the various layers of the neural model play. This helps us to get a global understanding of how information is structured in the model. I present our work on assessing and improving the probing methodologies. We developed a framework to clarify the limitations of past methods, showing that all common controls are insufficient. Based on this, we proposed more restrictive probing setups by creating artificial distribution shifts. We developed new metrics for the evaluation of probing classifiers that move the focus from the overall information that the layer contains to differences in information content across the LLM.
The second approach is concerned with explainability, specifically with self-rationalising models that generate free-text explanations along with their predictions. This is an instance of local understandability: We obtain justifications for individual predictions. In this setup, however, the generation of the explanations is just as opaque as the generation of the predictions. Therefore, our work in this field focuses on better understanding the properties of the generated explanations. We evaluate the downstream performance of a classifier with explanations generated by different model pipelines and compare it to human ratings of the explanations. Our results indicate that the properties that increase the downstream performance differ from those that humans appreciate when evaluating an explanation. Finally, we annotate expl |
---|---|
DOI: | 10.3384/9789180754712 |