Antitumor T-cell Homeostatic Activation Is Uncoupled from Homeostatic Inhibition by Checkpoint Blockade

T-cell transfer into lymphodepleted recipients induces homeostatic activation and potentiates antitumor efficacy. In contrast to canonical T-cell receptor-induced activation, homeostatic activation yields a distinct phenotype and memory state whose regulatory mechanisms are poorly understood. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer discovery 2019-11, Vol.9 (11), p.1520-1537
Hauptverfasser: Marshall, Netonia, Hutchinson, Keino, Marron, Thomas U, Aleynick, Mark, Hammerich, Linda, Upadhyay, Ranjan, Svensson-Arvelund, Judit, Brown, Brian D, Merad, Miriam, Brody, Joshua D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:T-cell transfer into lymphodepleted recipients induces homeostatic activation and potentiates antitumor efficacy. In contrast to canonical T-cell receptor-induced activation, homeostatic activation yields a distinct phenotype and memory state whose regulatory mechanisms are poorly understood. Here, we show in patients and murine models that, following transfer into lymphodepleted bone marrow transplant (BMT) recipients, CD8 T cells undergo activation but also simultaneous homeostatic inhibition manifested by upregulation of immune-checkpoint molecules and functional suppression. T cells transferred into BMT recipients were protected from homeostatic inhibition by PD-1/CTLA4 dual checkpoint blockade (dCB). This combination of dCB and BMT-"immunotransplant"-increased T-cell homeostatic activation and antitumor T-cell responses by an order of magnitude. Like homeostatic activation, homeostatic inhibition is IL7/IL15-dependent, revealing mechanistic coupling of these two processes. Marked similarity in modulation of post-BMT T cells in mice and patients is promising for the clinical translation of immunotransplant (NCT03305445) and for addressing homeostatic inhibition in T-cell therapies. SIGNIFICANCE: For optimal anticancer effect, T-cell therapies including chimeric antigen receptor T-cell, tumor-infiltrating lymphocyte, and transgenic T-cell therapies require transfer into lymphodepleted recipients and homeostatic activation; however, concomitant homeostatic inhibition mitigates T-cell therapies' efficacy. Checkpoint blockade uncouples homeostatic inhibition from activation, amplifying T-cell responses. Conversely, tumors nonresponsive to checkpoint blockade or BMT are treatable with immunotransplant. . .
ISSN:2159-8274
2159-8290
2159-8290
DOI:10.1158/2159-8290.CD-19-0391