Convergence and local-to-global results for p-superminimizers on quasiopen sets
In this paper, several convergence results for fine p-(super)minimizers on quasiopen sets in metric spaces are obtained. For this purpose, we deduce a Caccioppoli-type inequality and local-to-global principles for fine p-(super)minimizers on quasiopen sets. A substantial part of these considerations...
Gespeichert in:
Veröffentlicht in: | Journal of Differential Equations 2023-08, Vol.365, p.812-831 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, several convergence results for fine p-(super)minimizers on quasiopen sets in metric spaces are obtained. For this purpose, we deduce a Caccioppoli-type inequality and local-to-global principles for fine p-(super)minimizers on quasiopen sets. A substantial part of these considerations is to show that the functions belong to a suitable local fine Sobolev space. We prove our results for a complete metric space equipped with a doubling measure supporting a p-Poincaré inequality with 1 |
---|---|
ISSN: | 0022-0396 1090-2732 1090-2732 |
DOI: | 10.1016/j.jde.2023.05.009 |