Nature of the Superionic Phase Transition of Lithium Nitride from Machine Learning Force Fields

Superionic conductors have great potential as solid-state electrolytes, but the physics of type-II superionic transitions remains elusive. In this study, we employed molecular dynamics simulations, using machine learning force fields, to investigate the type-II superionic phase transition in α-Li3N....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2023-08, Vol.35 (15), p.6133-6140
Hauptverfasser: Krenzer, Gabriel, Klarbring, Johan, Tolborg, Kasper, Rossignol, Hugo, McCluskey, Andrew R., Morgan, Benjamin J., Walsh, Aron
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superionic conductors have great potential as solid-state electrolytes, but the physics of type-II superionic transitions remains elusive. In this study, we employed molecular dynamics simulations, using machine learning force fields, to investigate the type-II superionic phase transition in α-Li3N. We characterized Li3N above and below the superionic phase transition by calculating the heat capacity, Li+ ion self-diffusion coefficient, and Li defect concentrations as functions of temperature. Our findings indicate that both the Li+ self-diffusion coefficient and Li vacancy concentration follow distinct Arrhenius relationships in the normal and superionic regimes. The activation energies for self-diffusion and Li vacancy formation decrease by a similar proportion across the superionic phase transition. This result suggests that the superionic transition may be driven by a decrease in defect formation energetics rather than changes in Li transport mechanism. This insight may have implications for other type-II superionic materials.
ISSN:0897-4756
1520-5002
1520-5002
DOI:10.1021/acs.chemmater.3c01271