Tunning Multicolor Light Emission in Lead-free Materials
Perovskites are a class of compounds with the general formula ABX 3 and becoming increasingly attractive recently. Because this kind of material possesses various advantages such as abundant raw materials, easy synthesis, excellent photoelectric properties, and short production process. As one of th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Perovskites are a class of compounds with the general formula ABX 3 and becoming increasingly attractive recently. Because this kind of material possesses various advantages such as abundant raw materials, easy synthesis, excellent photoelectric properties, and short production process. As one of the applications for lead-based perovskites, the perovskite solar cells have quickly enhanced their PCE from 3.8% in 2009 to over 25% within a short period. However, the problems, such as instability of the ionic crystal nature and toxicity of lead, largely hinder the lead-based perovskites towards commercialization. Therefore, it is necessary to develop new lead-free materials as alternative to lead-based perovskites, where similar structures can be formed to inherit the excellent optoelectronic properties. Moreover, new properties can be achieved due to more abundant metal candidates in lead-free materials. Based on this, we develop different kinds of perovskite-structure-like lead-free materials such as organic inorganic hybrid materials, chiral materials and double perovskites. In addition to physical and chemical properties like photoluminescence, absorption, structure, etc., we further demonstrate their potential applications according to their unique properties such as multicolor light emission.
We incorporate chiral MBA (methylbenzylamine) in inorganic metal system to obtain chiral lead-free organic inorganic hybrid materials, where significant crystallization difference is observed between rac and chiral halide compounds for the first time. Such difference is confirmed by spectrum and structural results. What’s more, we find that moisture can cause the structural transfer in chiral compounds, attributed to the asymmetric hydrogen bonding of chiral compounds. Our achievements open up new chance to improve our material property and provide new horizon for synthesis of chiral materials in the future.
Then, we obtained blue emission center in Mn-based organic and inorganic compounds by choosing organic molecule MBA. The method has basic difference with the emissions in Mn based compounds. The coexisting two emission centers of our Mn based samples is verified by spectral results. Because two emission centers can induce different PL excitation responses, so that the excitation wavelengths are capable of manipulating the emission color. Specifically, we achieve CIE coordinates of (0.33, 0.35) with a white emission. The potential of our materials in anti-counter |
---|---|
DOI: | 10.3384/9789180751070 |