Real-Time Visual Analytics Interfaces to Strengthen Human-Automation Collaboration
Automation in today’s world supports human operators to accomplish several tasks in limited time. With more advanced automation and autonomous systems, the hu-mans’ role is shifting from hands-on operational tasks to supervisory tasks. In complex environments such as air traffic control, supervisory t...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Automation in today’s world supports human operators to accomplish several tasks in limited time. With more advanced automation and autonomous systems, the hu-mans’ role is shifting from hands-on operational tasks to supervisory tasks. In complex environments such as air traffic control, supervisory tasks become difficult to manage during unexpected situations as the operator needs to have a clear understanding of various resolution strategies and their consequences and make decisions about them in a limited amount of time (i.e. within a couple of minutes). In such environments, interface designers must carefully consider how information should be presented to the operators. An improper way of presenting information could, wastefully consume operators’ cognitive resources resulting in inefficient decision-making and an increased risk of failure.
By designing ecological visual analytics interfaces, this thesis addresses the problem of real-time decision-making in the domain of air traffic control. The aim of this thesis has been to apply ecological design theories to the design and evaluation of visual representations to better support controllers’ analytical capabilities and decision-making. Four novel visual analytics interfaces were designed, developed, and tested over the course of this research project. To understand how the designed visual representations affected the operators’ decision-making processes, evaluation studies with air traffic controllers as well as novices without ATC experience were conducted for two of the designed interfaces and the results were analyzed.
The contribution of this thesis to the field of air traffic control and visualization design is fourfold. First, the thesis contributes knowledge on what information should be visualized and how, to achieve functional goals of conflict detection and resolution task of air traffic control. Second, evolved through a series of design studies, a final interactive visual analytics interface is proposed that visualizes information about the available solution space for solving conflict situations between airborne traffic and the traffic complexity. The interface supports controllers’ decision-making process for resolving conflicts and ability to reduce the traffic complexity. Third, the method developed for evaluating the interface designs contribute with knowledge on how interfaces tailored to safety-critical systems can be tested. Fourth, findings show that the integration of ecological interface design with th |
---|---|
DOI: | 10.3384/9789179294908 |