Real-time energy optimization of HEVs under-connected environment: a benchmark problem and receding horizon-based solution
In this paper, we propose a benchmark problem for the challengers aiming to energy efficiency control of hybrid electric vehicles (HEVs) on a road with slope. Moreover, it is assumed that the targeted HEVs are in the connected environment with the obtainment of real-time information of vehicle-to-ev...
Gespeichert in:
Veröffentlicht in: | Control theory and technology 2022-05, Vol.20 (2), p.145-160 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a benchmark problem for the challengers aiming to energy efficiency control of hybrid electric vehicles (HEVs) on a road with slope. Moreover, it is assumed that the targeted HEVs are in the connected environment with the obtainment of real-time information of vehicle-to-everything (V2X), including geographic information, vehicle-to-infrastructure (V2I) information and vehicle-to-vehicle (V2V) information. The provided simulator consists of an industrial-level HEV model and a traffic scenario database obtained through a commercial traffic simulator, where the running route is generated based on real-world data with slope and intersection position. The benchmark problem to be solved is the HEVs powertrain control using traffic information to fulfill fuel economy improvement while satisfying the constraints of driving safety and travel time. To show the HEV powertrain characteristics, a case study is given with the speed planning and energy management strategy. |
---|---|
ISSN: | 2095-6983 2198-0942 |
DOI: | 10.1007/s11768-022-00086-y |