Norovirus Epidemiology: Prevalence, transmission, and determinants of disease susceptibility

Norovirus (NoV) is today recognized as the most important agent of acute human gastroenteritis, causing a high number of diarrheal episodes in both adults and children. Outbreaks in hospitals, nursing homes, day-care centers, and from consumption of contaminated food and drinking water are common. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nordgren, Johan
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Norovirus (NoV) is today recognized as the most important agent of acute human gastroenteritis, causing a high number of diarrheal episodes in both adults and children. Outbreaks in hospitals, nursing homes, day-care centers, and from consumption of contaminated food and drinking water are common. Wastewater can be a source of NoV dissemination, e.g. when used for irrigation of crops, or due to shellfish cultivation near the outlet of wastewater treatment plants. Today, at least 25 different genotypes of NoV belonging to two major genogroups (GG) have been observed in humans. These genotypes are associated with different transmission patterns and disease severity in humans. Also host genetic factors, such as presence of ABO antigens and mutations in the FUT2 gene affect susceptibility, and can even render complete resistance to symptomatic infections, but only the most common NoV genotypes have been studied regarding this. In this thesis, we wanted to find prevention strategies for NoV disease through four studies of NoV epidemiology: Development of a sensitive real-time PCR assay for detection and quantification of human NoVs, characterization of NoV in children with diarrhea in Nicaragua, investigation of the prevalence and parameters influencing NoV concentration in a wastewater treatment plant in Gothenburg, Sweden, and studying host susceptibility factors in a foodborne NoV outbreak in Jönköping, Sweden. First we developed a real-time PCR assay which can detect and quantify NoV in various settings, both in stool samples of patients, and in wastewater samples from which virus was first concentrated using ultracentrifugation. This assay was found to be more sensitive than commercial immunological assays and conventional PCR methods. The assay is furthermore able to differentiate between the two major human genogroups of NoV using melting curve analysis, which provides valuable information about the circulating NoV strains. The survey of NoV in pediatric diarrhea in Nicaragua revealed a large impact of NoV, both in community and hospital based settings, with 15% of the severe diarrhea cases attributed to NoV. Peaks of clinically diagnosed NoV gastroenteritis were associated with emerging variants of genotype GGII.4, largely replacing the many different NoV genotypes circulating before the peak of diarrheal cases. Children infected with the GGII.4 genotype were found to shed more virus compared to children infected with other genotypes, which could partly