Enhancing Lattice-Based Motion Planning With Introspective Learning and Reasoning

Lattice-based motion planning is a hybrid planning method where a plan is made up of discrete actions, while simultaneously also being a physically feasible trajectory. The planning takes both discrete and continuous aspects into account, for example action pre-conditions and collision-free action-d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2021-07, Vol.6 (3), p.4385-4392
Hauptverfasser: Tiger, Mattias, Bergstrom, David, Norrstig, Andreas, Heintz, Fredrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lattice-based motion planning is a hybrid planning method where a plan is made up of discrete actions, while simultaneously also being a physically feasible trajectory. The planning takes both discrete and continuous aspects into account, for example action pre-conditions and collision-free action-duration in the configuration space. Safe motion planning rely on well-calibrated safety-margins for collision checking. The trajectory tracking controller must further be able to reliably execute the motions within this safety margin for the execution to be safe. In this work we are concerned with introspective learning and reasoning about controller performance over time. Normal controller execution of the different actions is learned using machine learning techniques with explicit uncertainty quantification, for safe usage in safety-critical applications. By increasing the model accuracy the safety margins can be reduced while maintaining the same safety as before. Reasoning takes place to both verify that the learned models stays safe and to improve collision checking effectiveness in the motion planner using more accurate execution predictions with a smaller safety margin. The presented approach allows for explicit awareness of controller performance under normal circumstances, and detection of incorrect performance in abnormal circumstances. Evaluation is made on the nonlinear dynamics of a quadcopter in 3D using simulation.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2021.3068550