Bio Based Batteries

The expanding use of electrical power generated from wind turbines and solar photovoltaic plants is enabled by the decreasing cost of electrical energy from sun and wind. With the advent of electrical energy from the intermittent solar and wind energy resources comes the requirement that electricity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-11, Vol.11 (43), p.n/a
Hauptverfasser: Liu, Lianlian, Solin, Niclas, Inganäs, Olle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The expanding use of electrical power generated from wind turbines and solar photovoltaic plants is enabled by the decreasing cost of electrical energy from sun and wind. With the advent of electrical energy from the intermittent solar and wind energy resources comes the requirement that electricity must be stored for use over time. The huge demand for materials for such storage systems will require a considerable energy input in extraction, processing and materials formulation, and new and sustainable electrochemical systems need to be developed. Storing electrical energy in bio based batteries is one of the options for handling the rapid expansion of renewable and variable electrical energy generated in wind turbines and in solar photovoltaic systems, from small to large. With projected needs for storage at 300 GWh for the coming decade, there are many niches for new technologies and possibilities. A supply line of materials for energy storage materials could be ultimately based on photosynthesis, in the form of materials derived from plants. Redox activity is possible in lignin, humic acid, and polyphenolic macromolecules, sometimes by electrochemical activation of redox groups. Carbon compounds are essential as electroactive materials, electronic conductors, and electrolytes in bio based batteries, and their development is inspired by the prime example of quinones as the energy carrier in bioenergetics. By utilizing materials produced by green plants, and sometimes available as waste products from well‐established industrial processes, the steps toward safe and scalable bio based batteries are enabled.
ISSN:1614-6832
1614-6840
1614-6840
DOI:10.1002/aenm.202003713