Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer

Algorithms can improve the objectivity and efficiency of histopathologic slide analysis. In this paper, we investigated the impact of scanning systems (scanners) and cycle-GAN-based normalization on algorithm performance, by comparing different deep learning models to automatically detect prostate c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-09, Vol.10 (1), p.14398, Article 14398
Hauptverfasser: Swiderska-Chadaj, Zaneta, de Bel, Thomas, Blanchet, Lionel, Baidoshvili, Alexi, Vossen, Dirk, van der Laak, Jeroen, Litjens, Geert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Algorithms can improve the objectivity and efficiency of histopathologic slide analysis. In this paper, we investigated the impact of scanning systems (scanners) and cycle-GAN-based normalization on algorithm performance, by comparing different deep learning models to automatically detect prostate cancer in whole-slide images. Specifically, we compare U-Net, DenseNet and EfficientNet. Models were developed on a multi-center cohort with 582 WSIs and subsequently evaluated on two independent test sets including 85 and 50 WSIs, respectively, to show the robustness of the proposed method to differing staining protocols and scanner types. We also investigated the application of normalization as a pre-processing step by two techniques, the whole-slide image color standardizer (WSICS) algorithm, and a cycle-GAN based method. For the two independent datasets we obtained an AUC of 0.92 and 0.83 respectively. After rescanning the AUC improves to 0.91/0.88 and after style normalization to 0.98/0.97. In the future our algorithm could be used to automatically pre-screen prostate biopsies to alleviate the workload of pathologists.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-71420-0