Power Control in Cellular Massive MIMO With Varying User Activity: A Deep Learning Solution

This paper considers the sum spectral efficiency (SE) optimization problem in multi-cell Massive MIMO systems with a varying number of active users. This is formulated as a joint pilot and data power control problem. Since the problem is non-convex, we first derive a novel iterative algorithm that o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2020-09, Vol.19 (9), p.5732-5748
Hauptverfasser: Van Chien, Trinh, Nguyen Canh, Thuong, Bjornson, Emil, Larsson, Erik G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the sum spectral efficiency (SE) optimization problem in multi-cell Massive MIMO systems with a varying number of active users. This is formulated as a joint pilot and data power control problem. Since the problem is non-convex, we first derive a novel iterative algorithm that obtains a stationary point in polynomial time. To enable real-time implementation, we also develop a deep learning solution. The proposed neural network, PowerNet, only uses the large-scale fading information to predict both the pilot and data powers. The main novelty is that we exploit the problem structure to design a single neural network that can handle a dynamically varying number of active users; hence, PowerNet is simultaneously approximating many different power control functions with varying number inputs and outputs. This is not the case in prior works and thus makes PowerNet an important step towards a practically useful solution. Numerical results demonstrate that PowerNet only loses 2% in sum SE, compared to the iterative algorithm, in a nine-cell system with up to 90 active users per in each coherence interval, and the runtime was only 0.03 ms on a graphics processing unit (GPU). When good data labels are selected for the training phase, PowerNet can yield better sum SE than by solving the optimization problem with one initial point.
ISSN:1536-1276
1558-2248
1558-2248
DOI:10.1109/TWC.2020.2996368