Electron paramagnetic resonance and theoretical study of gallium vacancy in β-Ga2O3
Unintentionally doped n-type β-Ga2O3 becomes highly resistive after annealing at high temperatures in oxygen ambient. The annealing process also induces an electron paramagnetic resonance (EPR) center, labeled IR1, with an electron spin of S = 1/2 and principal g-values of gxx = 2.0160, gyy = 2.0386...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2020-07, Vol.117 (3), Article 032101 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unintentionally doped n-type β-Ga2O3 becomes highly resistive after annealing at high temperatures in oxygen ambient. The annealing process also induces an electron paramagnetic resonance (EPR) center, labeled IR1, with an electron spin of S = 1/2 and principal g-values of gxx = 2.0160, gyy = 2.0386, and gzz = 2.0029 with the principal axis of gzz being 60° from the [001]* direction and gyy along the b-axis. A hyperfine (hf) structure due to the hf interaction between the electron spin and nuclear spins of two equivalent Ga atoms with a hf splitting of ∼29 G (for 69Ga) has been observed. The center can also be created by electron irradiation. Comparing the Ga hf constants determined by EPR with corresponding values calculated for different Ga vacancy-related defects, the IR1 defect is assigned to the double negative charge state of either the isolated Ga vacancy at the tetrahedral site (V2−Ga(I)) or the VGa(I)–Gaib–VGa(I) complex. |
---|---|
ISSN: | 0003-6951 1077-3118 1077-3118 |
DOI: | 10.1063/5.0012579 |