Distribution and mobilization of heavy metals at an acid mine drainage affected region in South China, a post-remediation study

Dabaoshan Mine Site (DMS) is the largest polymetallic mine in South China. The Hengshi River flowing next to DMS receives acid mine wastes leaching from the tailings pond and run-off from a treatment plant, which flows into the Wengjiang River. This study focuses on spatiotemporal distribution and m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2020-07, Vol.724, p.138122-138122, Article 138122
Hauptverfasser: Luo, Chen, Routh, Joyanto, Dario, Mårten, Sarkar, Soumyajit, Wei, Lezhang, Luo, Dinggui, Liu, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dabaoshan Mine Site (DMS) is the largest polymetallic mine in South China. The Hengshi River flowing next to DMS receives acid mine wastes leaching from the tailings pond and run-off from a treatment plant, which flows into the Wengjiang River. This study focuses on spatiotemporal distribution and mobilization of As, Cd, Pb, and Zn along the Hengshi River, groundwater, fluvial sediments, and soils, with a focus on As due to its high toxicity and the fact that mining is one of the main sources of contamination. Geochemical analyses (heavy metals, grain-size, X-ray diffraction, organic carbon and sulfur content) followed by geochemical modeling (PHREEQC) and statistical assessment were done to determine the physicochemical characteristics, toxicity risks, and behavior of heavy metals. Near the tailings pond, heavy metal concentrations in surface water were 2–100 times higher than the Chinese surface water standard for agriculture. Although water quality during the dry season has improved since the wastewater treatment plant started, heavy metal concentrations were high during rainy season. In groundwater, heavy metal concentrations were low and pose little risks. Soils along the Hengshi River were disturbed and they did not show any specific trends. The potential ecological risk of heavy metals was ranked as Cd > As > Cu > Pb > Zn in sediments and Cd > Cu > Pb > As > Zn in soils indicating multi-metal contamination and toxicity. As(III) was the predominant species in surface water during the dry season, whereas As(V) dominated during the rainy season. Arsenic levels in most sites exceeded the Chinese soil standard. Although As is assumed to have a moderate ecological risk in sediments and low risk in soils, anthropogenic activities, such as mining and land-use changes contribute to the release of As and other heavy metals and pose a risk for local residents. [Display omitted] •Treated acid mine drainage (AMD) is discharged from Dabaoshan mine into Hengshi River.•Spatiotemporal distribution of As, Cd, Pb, and Zn assessed in water, sediment and soil.•Water quality in dry season meets the Chinese standard but not during the rainy season.•The ecological risk was Cd > As > Cu > Pb > Zn in sediment and Cd > Cu > Pb > As > Zn in soil.•Mining and land-use changes contribute to release of As and heavy metals and pose a risk.
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2020.138122