On Dynamics of Jellet’s Egg. Asymptotic Solutions Revisited
We study here the asymptotic condition E ˙ = − μ g n b A 2 = 0 for an eccentric rolling and sliding ellipsoid with axes of principal moments of inertia directed along geometric axes of the ellipsoid, a rigid body which we call here Jellett’s egg (JE). It is shown by using dynamic equations expressed...
Gespeichert in:
Veröffentlicht in: | Regular & chaotic dynamics 2020, Vol.25 (1), p.40-58 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study here the asymptotic condition
E
˙
=
−
μ
g
n
b
A
2
=
0
for an eccentric rolling and sliding ellipsoid with axes of principal moments of inertia directed along geometric axes of the ellipsoid, a rigid body which we call here Jellett’s egg (JE). It is shown by using dynamic equations expressed in terms of Euler angles that the asymptotic condition is satisfied by stationary solutions. There are 4 types of stationary solutions: tumbling, spinning, inclined rolling and rotating on the side solutions. In the generic situation of tumbling solutions concise explicit formulas for stationary angular velocities
φ
˙
JE
(
cos
θ
)
,
ω
3
JE
(
cos
θ
)
as functions of JE parameters
α
˜
,
α
,
γ
are given. We distinguish the case
1
−
α
˜
<
α
2
<
1
+
α
,
˜
1
−
α
,
˜
<
α
2
γ
<
1
+
α
˜
when velocities
φ
JE
,
ω
3
JE
are defined for the whole range of inclination angles
θ
∈ (0, π). Numerical simulations illustrate how, for a JE launched almost vertically with
θ
(
0
)
=
1
100
,
1
10
, the inversion of the JE depends on relations between parameters. |
---|---|
ISSN: | 1560-3547 1468-4845 1560-3547 1468-4845 |
DOI: | 10.1134/S1560354720010062 |