Phase evolution of radio frequency magnetron sputtered Cr-rich (Cr,Zr)(2)O-3 coatings studied by in situ synchrotron X-ray diffraction during annealing in air or vacuum
The phase evolution of reactive radio frequency (RF) magnetron sputtered Cr0.28Zr0.10O0.61 coatings has been studied by in situ synchrotron X-ray diffraction during annealing under air atmosphere and vacuum. The annealing in vacuum shows t-ZrO2 formation starting at similar to 750-800 degrees C, fol...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2019-11, Vol.34 (22), p.3735 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The phase evolution of reactive radio frequency (RF) magnetron sputtered Cr0.28Zr0.10O0.61 coatings has been studied by in situ synchrotron X-ray diffraction during annealing under air atmosphere and vacuum. The annealing in vacuum shows t-ZrO2 formation starting at similar to 750-800 degrees C, followed by decomposition of the alpha-Cr2O3 structure in conjunction with bcc-Cr formation, starting at similar to 950 degrees C. The resulting coating after annealing to 1140 degrees C is a mixture of t-ZrO2, m-ZrO2, and bcc-Cr. The air-annealed sample shows t-ZrO2 formation starting at similar to 750 degrees C. The resulting coating after annealing to 975 degrees C is a mixture of t-ZrO2 and alpha-Cr2O3 (with dissolved Zr). The microstructure coarsened slightly during annealing, but the mechanical properties are maintained, with no detectable bcc-Cr formation. A larger t-ZrO2 fraction compared with alpha-Cr2O3 is observed in the vacuum-annealed coating compared with the air-annealed coating at 975 degrees C. The results indicate that the studied pseudo-binary oxide is more stable in air atmosphere than in vacuum. |
---|---|
ISSN: | 2044-5326 0884-2914 |
DOI: | 10.1557/jmr.2019.340 |