Accuracy of Stable, High-order Finite Difference Methods for Hyperbolic Systems with Non-smooth Wave Speeds
We derive analytic solutions to the scalar and vector advection equation with variable coefficients in one spatial dimension using Laplace transform methods. These solutions are used to investigate how accuracy and stability are influenced by the presence of discontinuous wave speeds when applying h...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2019-12, Vol.81 (3), p.2356-2387 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive analytic solutions to the scalar and vector advection equation with variable coefficients in one spatial dimension using Laplace transform methods. These solutions are used to investigate how accuracy and stability are influenced by the presence of discontinuous wave speeds when applying high-order-accurate, skew-symmetric finite difference methods designed for smooth wave speeds. The methods satisfy a summation-by-parts rule with weak enforcement of boundary conditions and formal order of accuracy equal to 2, 3, 4 and 5. We study accuracy, stability and convergence rates for linear wave speeds that are (a) constant, (b) non-constant but smooth, (c) continuous with a discontinuous derivative, and (d) constant with a jump discontinuity. Cases (a) and (b) correspond to smooth wave speeds and yield stable schemes and theoretical convergence rates. Non-smooth wave speeds [cases (c) and (d)], however, reveal reductions in theoretical convergence rates and in the latter case, the presence of an instability. |
---|---|
ISSN: | 0885-7474 1573-7691 1573-7691 |
DOI: | 10.1007/s10915-019-01088-w |