The Cartan, Choquet and Kellogg properties for the fine topology on metric spaces
We prove the Cartan and Choquet properties for the fine topology on a complete metric space equipped with a doubling measure supporting a p -Poincaré inequality, 1 < p < ∞. We apply these key tools to establish a fine version of the Kellogg property, characterize finely continuous functions by...
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2018-06, Vol.135 (1), p.59-83 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the Cartan and Choquet properties for the fine topology on a complete metric space equipped with a doubling measure supporting a
p
-Poincaré inequality, 1 <
p
< ∞. We apply these key tools to establish a fine version of the Kellogg property, characterize finely continuous functions by means of quasicontinuous functions, and show that capacitary measures associated with Cheeger supersolutions are supported by the fine boundary of the set. |
---|---|
ISSN: | 0021-7670 1565-8538 1565-8538 |
DOI: | 10.1007/s11854-018-0029-8 |