The Cartan, Choquet and Kellogg properties for the fine topology on metric spaces

We prove the Cartan and Choquet properties for the fine topology on a complete metric space equipped with a doubling measure supporting a p -Poincaré inequality, 1 < p < ∞. We apply these key tools to establish a fine version of the Kellogg property, characterize finely continuous functions by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2018-06, Vol.135 (1), p.59-83
Hauptverfasser: Björn, Anders, Björn, Jana, Latvala, Visa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the Cartan and Choquet properties for the fine topology on a complete metric space equipped with a doubling measure supporting a p -Poincaré inequality, 1 < p < ∞. We apply these key tools to establish a fine version of the Kellogg property, characterize finely continuous functions by means of quasicontinuous functions, and show that capacitary measures associated with Cheeger supersolutions are supported by the fine boundary of the set.
ISSN:0021-7670
1565-8538
1565-8538
DOI:10.1007/s11854-018-0029-8