Type I Collagen-Derived Injectable Conductive Hydrogel Scaffolds as Glucose Sensors
The advent of home blood glucose monitoring revolutionized diabetes management, and the recent introduction of both wearable devices and closed-loop continuous systems has enormously impacted the lives of people with diabetes. We describe the first fully injectable soft electrochemical glucose senso...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-05, Vol.10 (19), p.16244-16249 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The advent of home blood glucose monitoring revolutionized diabetes management, and the recent introduction of both wearable devices and closed-loop continuous systems has enormously impacted the lives of people with diabetes. We describe the first fully injectable soft electrochemical glucose sensor for in situ monitoring. Collagen, the main component of a native extracellular matrix in humans and animals, was used to fabricate an in situ gellable self-supporting electroconductive hydrogel that can be injected onto an electrode surface or into porcine meat to detect glucose amperometrically. The study provides a proof-of-principle of an injectable electrochemical sensor suitable for monitoring tissue glucose levels that may, with further development, prove clinically useful in the future. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.8b04091 |