Highly Efficient Energy Transfer in Light Emissive Poly(9,9-dioctylfluorene) and Poly(p‑phenylenevinylene) Blend System
A polymer blend system F81–x :SY x based on poly(9,9-dioctylfluorene) (F8) from the family of polyfluorenes (PFO) and a poly(para-phenylenevinylene) (PPV) derivative superyellow (SY) shows highly efficient energy transfer from F8 host to SY guest molecules. This has been realized due to a strong o...
Gespeichert in:
Veröffentlicht in: | ACS photonics 2018-02, Vol.5 (2), p.607-613 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A polymer blend system F81–x :SY x based on poly(9,9-dioctylfluorene) (F8) from the family of polyfluorenes (PFO) and a poly(para-phenylenevinylene) (PPV) derivative superyellow (SY) shows highly efficient energy transfer from F8 host to SY guest molecules. This has been realized due to a strong overlap between F8 photoemission and SY photoabsorption spectra and negligibly low self-absorption. The steady-state and time-correlated spectroscopic measurements show an increased photoluminescence quantum efficiency (PLQE) and lifetime (τ) of SY, with an opposite trend of decreasing PLQE and τ of F8 excitons with increasing SY concentration, suggesting the Förster resonance energy transfer (FRET) to be the main decay pathway in the proposed system. The systematic study of the exciton dynamics shows a complete energy transfer at 10% of SY in the F8 host matrix and a Förster radius of ∼6.3 nm. The polymer blend system exhibits low laser and amplified spontaneous emission thresholds. An ultrahigh efficiency (27 cd·A–1) in F81–x :SY x based light emitting diodes (LED) has been realized due to the intrinsic property of a well-balanced charge transport within the emissive layer. The dual pathway, that is, the efficient energy transfer between the blended molecules via resonance energy transfer, and the charge-traps-assisted balanced transport makes the system promising for achieving highly efficient devices and a potential candidate for lasing applications. |
---|---|
ISSN: | 2330-4022 2330-4022 |
DOI: | 10.1021/acsphotonics.7b01177 |