Predictive monocular odometry (PMO): What is possible without RANSAC and multiframe bundle adjustment?

Visual odometry using only a monocular camera faces more algorithmic challenges than stereo odometry. We present a robust monocular visual odometry framework for automotive applications. An extended propagation-based tracking framework is proposed which yields highly accurate (unscaled) pose estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Image and vision computing 2017-12, Vol.68, p.3-13
Hauptverfasser: Fanani, Nolang, Stürck, Alina, Ochs, Matthias, Bradler, Henry, Mester, Rudolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Visual odometry using only a monocular camera faces more algorithmic challenges than stereo odometry. We present a robust monocular visual odometry framework for automotive applications. An extended propagation-based tracking framework is proposed which yields highly accurate (unscaled) pose estimates. Scale is supplied by ground plane pose estimation employing street pixel labeling using a convolutional neural network (CNN). The proposed framework has been extensively tested on the KITTI dataset and achieves a higher rank than current published state-of-the-art monocular methods in the KITTI odometry benchmark. Unlike other VO/SLAM methods, this result is achieved without loop closing mechanism, without RANSAC and also without multiframe bundle adjustment. Thus, we challenge the common belief that robust systems can only be built using iterative robustification tools like RANSAC.
ISSN:0262-8856
1872-8138
1872-8138
DOI:10.1016/j.imavis.2017.08.002