High-End Performance with Low-End Hardware: Analysis of Massive MIMO Base Station Transceivers

Massive MIMO (multiple-input–multiple-output) is a multi-antenna technology for cellular wireless communication, where the base station uses a large number of individually controllable antennas to multiplex users spatially.  This technology can provide a high spectral efficiency.  One of its main ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mollén, Christopher
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Massive MIMO (multiple-input–multiple-output) is a multi-antenna technology for cellular wireless communication, where the base station uses a large number of individually controllable antennas to multiplex users spatially.  This technology can provide a high spectral efficiency.  One of its main challenges is the immense hardware complexity and cost of all the radio chains in the base station.  To make massive MIMO commercially viable, inexpensive, low-complexity hardware with low linearity has to be used, which inherently leads to more signal distortion.  This thesis investigates how the degenerated linearity of some of the main components—power amplifiers, analog-to-digital converters (ADCs) and low-noise amplifiers—affects the performance of the system, with respect to data rate, power consumption and out-of-band radiation. The main results are: Spatial processing can reduce PAR (peak-to-average ratio) of the transmit signals in the downlink to as low as 0B; this, however, does not necessarily reduce power consumption.  In environments with isotropic fading, one-bit ADCs lead to a reduction in effective signal-to-interference-and-noise ratio (SINR) of 4dB in the uplink and four-bit ADCs give a performance close to that of an unquantized system.  An analytical expression for the radiation pattern of the distortion from nonlinear power amplifiers is derived.  It shows how the distortion is beamformed to some extent, that its gain never is greater than that of the desired signal, and that the gain of the distortion is reduced with a higher number of served users and a higher number of channel taps.  Nonlinear low-noise amplifiers give rise to distortion that partly combines coherently and limits the possible SINR.  It is concluded that spatial processing with a large number of antennas reduces the impact of hardware distortion in most cases.  As long as proper attention is paid to the few sources of coherent distortion, the hardware complexity can be reduced in massive MIMO base stations to overcome the hardware challenge and make massive MIMO commercial reality. Massiv MIMO (eng: multiple-input–multiple-output) är en flerantennsteknologi för cellulär trådlös kommunikation, där basstationen använder ett stort antal individuellt styrbara antenner för att multiplexa användare i rummet.  Denna teknologi kan tillhandahålla en hög spektral effektivitet.  En av dess främsta utmaningar är den enorma hårdvarukomplexiteten och kostnaden hos basstationens alla radi
DOI:10.3384/diss-diva-143455