Eigenvalue Problem in a Solid with Many Inclusions: Asymptotic Analysis

We construct the asymptotic approximation to the first eigenvalue and corresponding eigensolution of Laplaces operator inside a domain containing a cloud of small rigid inclusions. The separation of the small inclusions is characterized by a small parameter which is much larger when compared with th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multiscale modeling & simulation 2017-01, Vol.15 (2), p.1003-1047
Hauptverfasser: Maz'ya, V. G., Movchan, A. B., Nieves, M. J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct the asymptotic approximation to the first eigenvalue and corresponding eigensolution of Laplaces operator inside a domain containing a cloud of small rigid inclusions. The separation of the small inclusions is characterized by a small parameter which is much larger when compared with the nominal size of inclusions. Remainder estimates for the approximations to the first eigenvalue and associated eigenfield are presented. Numerical illustrations are given to demonstrate the efficiency of the asymptotic approach compared to conventional numerical techniques, such as the finite element method, for three-dimensional solids containing clusters of small inclusions.
ISSN:1540-3459
1540-3467
1540-3467
DOI:10.1137/16M1079348