Eigenvalue Problem in a Solid with Many Inclusions: Asymptotic Analysis
We construct the asymptotic approximation to the first eigenvalue and corresponding eigensolution of Laplaces operator inside a domain containing a cloud of small rigid inclusions. The separation of the small inclusions is characterized by a small parameter which is much larger when compared with th...
Gespeichert in:
Veröffentlicht in: | Multiscale modeling & simulation 2017-01, Vol.15 (2), p.1003-1047 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct the asymptotic approximation to the first eigenvalue and corresponding eigensolution of Laplaces operator inside a domain containing a cloud of small rigid inclusions. The separation of the small inclusions is characterized by a small parameter which is much larger when compared with the nominal size of inclusions. Remainder estimates for the approximations to the first eigenvalue and associated eigenfield are presented. Numerical illustrations are given to demonstrate the efficiency of the asymptotic approach compared to conventional numerical techniques, such as the finite element method, for three-dimensional solids containing clusters of small inclusions. |
---|---|
ISSN: | 1540-3459 1540-3467 1540-3467 |
DOI: | 10.1137/16M1079348 |