Quasiopen and p-Path Open Sets, and Characterizations of Quasicontinuity

In this paper we give various characterizations of quasiopen sets and quasicontinuous functions on metric spaces. For complete metric spaces equipped with a doubling measure supporting a p -Poincaré inequality we show that quasiopen and p -path open sets coincide. Under the same assumptions we show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2017, Vol.46 (1), p.181-199
Hauptverfasser: Björn, Anders, Björn, Jana, Maly, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we give various characterizations of quasiopen sets and quasicontinuous functions on metric spaces. For complete metric spaces equipped with a doubling measure supporting a p -Poincaré inequality we show that quasiopen and p -path open sets coincide. Under the same assumptions we show that all Newton-Sobolev functions on quasiopen sets are quasicontinuous.
ISSN:0926-2601
1572-929X
1572-929X
DOI:10.1007/s11118-016-9580-z