Quasiopen and p-Path Open Sets, and Characterizations of Quasicontinuity
In this paper we give various characterizations of quasiopen sets and quasicontinuous functions on metric spaces. For complete metric spaces equipped with a doubling measure supporting a p -Poincaré inequality we show that quasiopen and p -path open sets coincide. Under the same assumptions we show...
Gespeichert in:
Veröffentlicht in: | Potential analysis 2017, Vol.46 (1), p.181-199 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we give various characterizations of quasiopen sets and quasicontinuous functions on metric spaces. For complete metric spaces equipped with a doubling measure supporting a
p
-Poincaré inequality we show that quasiopen and
p
-path open sets coincide. Under the same assumptions we show that all Newton-Sobolev functions on quasiopen sets are quasicontinuous. |
---|---|
ISSN: | 0926-2601 1572-929X 1572-929X |
DOI: | 10.1007/s11118-016-9580-z |