On the Chern–Gauss–Bonnet theorem for the noncommutative 4-sphere
We construct a differential calculus over the noncommutative 4-sphere in the framework of pseudo-Riemannian calculi, and show that for every metric in a conformal class of perturbations of the round metric, there exists a unique metric and torsion-free connection. Furthermore, we find a localization...
Gespeichert in:
Veröffentlicht in: | Journal of geometry and physics 2017-01, Vol.111, p.126-141 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct a differential calculus over the noncommutative 4-sphere in the framework of pseudo-Riemannian calculi, and show that for every metric in a conformal class of perturbations of the round metric, there exists a unique metric and torsion-free connection. Furthermore, we find a localization of the projective module corresponding to the space of vector fields, which allows us to formulate a Chern–Gauss–Bonnet type theorem for the noncommutative 4-sphere. |
---|---|
ISSN: | 0393-0440 1879-1662 |
DOI: | 10.1016/j.geomphys.2016.10.016 |