Source Localization of Reaction-Diffusion Models for Brain Tumors

We propose a mathematically well-founded approach for locating the source (initial state) of density functions evolved within a nonlinear reaction-diffusion model. The reconstruction of the initial source is an ill-posed inverse problem since the solution is highly unstable with respect to measureme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jaroudi, Rym, Baravdish, George, Åström, Freddie, Johansson, B. Tomas
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a mathematically well-founded approach for locating the source (initial state) of density functions evolved within a nonlinear reaction-diffusion model. The reconstruction of the initial source is an ill-posed inverse problem since the solution is highly unstable with respect to measurement noise. To address this instability problem, we introduce a regularization procedure based on the nonlinear Landweber method for the stable determination of the source location. This amounts to solving a sequence of well-posed forward reaction-diffusion problems. The developed framework is general, and as a special instance we consider the problem of source localization of brain tumors. We show numerically that the source of the initial densities of tumor cells are reconstructed well on both imaging data consisting of simple and complex geometric structures.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-45886-1_34