Magnetic collapse and the behavior of transition metal oxides at high pressure
We report a detail theoretical study of the electronic structure and phase stability of transition metal oxides MnO, FeO, CoO, and NiO in their paramagnetic cubic B1 structure by employing dynamical mean-field theory of correlated electrons combined with ab initio band-structure methods. Our calcula...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-10, Vol.94 (15), p.155135, Article 155135 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a detail theoretical study of the electronic structure and phase stability of transition metal oxides MnO, FeO, CoO, and NiO in their paramagnetic cubic B1 structure by employing dynamical mean-field theory of correlated electrons combined with ab initio band-structure methods. Our calculations reveal that under pressure these materials exhibit a Mott insulator-metal transition (IMT) which is accompanied by a simultaneous collapse of local magnetic moments and lattice volume, implying a complex interplay between chemical bonding and electronic correlations. Moreover, our results for the transition pressure show a monotonous decrease from ∼145 to 40 GPa, upon moving from MnO to CoO. In contrast to that, in NiO, magnetic collapse is found to occur at a remarkably higher pressure of ∼429 GPa. We provide a unified picture of such a behavior and suggest that it is primarily a localized to itinerant moment behavior transition at the IMT that gives rise to magnetic collapse in transition metal oxides. |
---|---|
ISSN: | 2469-9950 2469-9969 2469-9969 |
DOI: | 10.1103/PhysRevB.94.155135 |