On efficiently combining limited-memory and trust-region techniques

Limited-memory quasi-Newton methods and trust-region methods represent two efficient approaches used for solving unconstrained optimization problems. A straightforward combination of them deteriorates the efficiency of the former approach, especially in the case of large-scale problems. For this rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming computation 2017-03, Vol.9 (1), p.101-134
Hauptverfasser: Burdakov, Oleg, Gong, Lujin, Zikrin, Spartak, Yuan, Ya-xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Limited-memory quasi-Newton methods and trust-region methods represent two efficient approaches used for solving unconstrained optimization problems. A straightforward combination of them deteriorates the efficiency of the former approach, especially in the case of large-scale problems. For this reason, the limited-memory methods are usually combined with a line search. We show how to efficiently combine limited-memory and trust-region techniques. One of our approaches is based on the eigenvalue decomposition of the limited-memory quasi-Newton approximation of the Hessian matrix. The decomposition allows for finding a nearly-exact solution to the trust-region subproblem defined by the Euclidean norm with an insignificant computational overhead as compared with the cost of computing the quasi-Newton direction in line-search limited-memory methods. The other approach is based on two new eigenvalue-based norms. The advantage of the new norms is that the trust-region subproblem is separable and each of the smaller subproblems is easy to solve. We show that our eigenvalue-based limited-memory trust-region methods are globally convergent. Moreover, we propose improved versions of the existing limited-memory trust-region algorithms. The presented results of numerical experiments demonstrate the efficiency of our approach which is competitive with line-search versions of the L-BFGS method.
ISSN:1867-2949
1867-2957
1867-2957
DOI:10.1007/s12532-016-0109-7