Boundary Value Problems for Second‐Order Elliptic Operators Satisfying a Carleson Condition

Let Ω be a Lipschitz domain in ℝn,n≥2, and L=div A∇ be a second‐order elliptic operator in divergence form. We establish the solvability of the Dirichlet regularity problem with boundary data in H1,p(∂Ω) and of the Neumann problem with Lp(∂Ω) data for the operator L on Lipschitz domains with small L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2017-07, Vol.70 (7), p.1316-1365
Hauptverfasser: Dindoš, Martin, Pipher, Jill, Rule, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Ω be a Lipschitz domain in ℝn,n≥2, and L=div A∇ be a second‐order elliptic operator in divergence form. We establish the solvability of the Dirichlet regularity problem with boundary data in H1,p(∂Ω) and of the Neumann problem with Lp(∂Ω) data for the operator L on Lipschitz domains with small Lipschitz constant. We allow the coefficients of the operator L to be rough, obeying a certain Carleson condition with small norm. These results complete the results of Dindoš, Petermichl, and Pipher (2007), where the H1,p(∂Ω) Dirichlet problem was considered under the same assumptions, and Dindoš and Rule (2010), where the regularity and Neumann problems were considered on two‐dimensional domains.© 2016 Wiley Periodicals, Inc.
ISSN:0010-3640
1097-0312
1097-0312
DOI:10.1002/cpa.21649