Boundary Value Problems for Second‐Order Elliptic Operators Satisfying a Carleson Condition
Let Ω be a Lipschitz domain in ℝn,n≥2, and L=div A∇ be a second‐order elliptic operator in divergence form. We establish the solvability of the Dirichlet regularity problem with boundary data in H1,p(∂Ω) and of the Neumann problem with Lp(∂Ω) data for the operator L on Lipschitz domains with small L...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2017-07, Vol.70 (7), p.1316-1365 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Ω be a Lipschitz domain in ℝn,n≥2, and L=div A∇ be a second‐order elliptic operator in divergence form. We establish the solvability of the Dirichlet regularity problem with boundary data in H1,p(∂Ω) and of the Neumann problem with Lp(∂Ω) data for the operator L on Lipschitz domains with small Lipschitz constant. We allow the coefficients of the operator L to be rough, obeying a certain Carleson condition with small norm. These results complete the results of Dindoš, Petermichl, and Pipher (2007), where the H1,p(∂Ω) Dirichlet problem was considered under the same assumptions, and Dindoš and Rule (2010), where the regularity and Neumann problems were considered on two‐dimensional domains.© 2016 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0010-3640 1097-0312 1097-0312 |
DOI: | 10.1002/cpa.21649 |