Thermochemical Properties of Halides and Halohydrides of Silicon and Carbon
Atomization energies, enthalpies of formation, entropies as well as heat capacities of the SiHnXm and CHnXm systems, with X being F, Cl and Br, have been studied using quantum chemical calculations. The Gaussian-4 theory (G4) and Weizman-1 theory as modified by Barnes et al. 2009 (W1RO) have been ap...
Gespeichert in:
Veröffentlicht in: | ECS journal of solid state science and technology 2016-01, Vol.5 (2), p.P27-P35 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atomization energies, enthalpies of formation, entropies as well as heat capacities of the SiHnXm and CHnXm systems, with X being F, Cl and Br, have been studied using quantum chemical calculations. The Gaussian-4 theory (G4) and Weizman-1 theory as modified by Barnes et al. 2009 (W1RO) have been applied in the calculations of the electronic, zero point and thermal energies. The effects of low-lying electronically excited states due to spin orbit coupling were included for all atoms and diatomic species by mean of the electronic partition functions derived from the experimental or computational energy splittings. The atomization energies, enthalpies of formation, entropies and heat capacities derived from both methods were observed to be reliable. The thermochemical properties in the temperature range of 298-2500 K are provided in the form of 7-coefficient NASA polynomials. |
---|---|
ISSN: | 2162-8769 2162-8777 2162-8769 2162-8777 |
DOI: | 10.1149/2.0081602jss |